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»Feel free to interrupt me for
asking any questions at any time!

> Viewer discretion is advised!
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»Framework U

1. Intuitive understanding

v Basic idea in the Signal and Systems . BEERR
v Tssues of CS =12, EARCS

)

2. Math: Important theorems and proofs
» Showed with explanations and proofs e
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CSHERREFRIE
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» Showed with intuitive explanations

[puu]

» Given directly without explanations

3. Applications

MRI: Magnetic Resonance Imaging
Single pixel camera
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. Prerequisite & Recommendations f@ BIERETEE

Prerequisite course:
» Advanced Linear Algebra
» Signals and Systems or Digital Signal Processing

Recommended sources:

v' 1. {Linear Algebra Done Right) ( {ZHCENIZIXTES) )
v 2. RERVRERE |, BBE, IR/RETEXRE.
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State 1: Intuitive understanding of CS
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A kind of measurement !
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‘What's Sensing ( B ) 2 R\, 5500

A kind of measurement !

LDA projection axis \
maximizing total scatter under
the constraint of minimum
within-class scatter

100+

90

Significant PCA
J/ classification error

PCA projection axis
maximizing scatter
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» Examples of sensing system \/
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| Fourier transform : { Wavelet transform !
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https://zhuanlan.zhihu.com/p/22450818
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» Examples of sensing system
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http://daily.zhihu.com/story/3935067
https://en.wikipedia.org/wiki/File:Fourier_series_and_transform.gif
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»DFT(Discrete Fourier Transformation) U e

SR (EFF1E)

. . L Transform of the periodic summation of s(t)
Fourier transform of a function s(t) (which is not shown) aka "Fouri e cients"
F
5(f) st) < S(f)

S[k]

amplitude
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]t . Transform of periodically sampled s(t) Transform of both pericdic sa
ﬁin E3 H 1% aka "Discrete-time Fourier transform" "Discret
N 2 [EIH

mpling and pericdic summation
aka "Discrete Fourier transform"

armplitude

Sye(f) e Swlk]
v |
frequency frequency
, ....................... \
- def v .
e _ y .
1 X = E T, € 2"”"”"/N, ke Z (integers) |
- n=0
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https://en.wikipedia.org/wiki/Discrete_Fourier_transform
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»DFT(Discrete Fourier Transformation)

def

Xk = an e 27”"’”/N, ke Z (integers)
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https://en.wikipedia.org/wiki/DFT_matrix
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This is sensing of matrix form! f@ —
»DFT(Discrete Fourier Transformation) u

N-1

X} dof Z T, - e_%ﬁm/N, k € Z (integers)

n=0

I X[UE -’_'_'_H_‘_'_'_| Gt -D’ -K[UJ-
X[1] Ry x[1]
X[2] mar x[2]
ey ' x[3]
xiall x[4]
X[5] | X[5]
X[6] T F - x[6]
X[7] e e T X[7]
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https://en.wikipedia.org/wiki/ DFT_matrix
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. This is sensing of matrix form! f@ BIERETEE

»DFT(Discrete Fourier Transformation)

N-1
X} dof Z T, - e_%ﬁm/N, k € Z (integers)
n=0
- - - - n _— -
X[O] | | | | | | | — X[OJ
X[1] R e e x[1]
X[2] R e et et B X[2]
(R T L
X[3] = A NN 1—*-:__|_ A = x[3]
o X[4]
X[5]
X[6]
X[7]

https://en.wikipedia.org/wiki/DFT_matrix
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»Idea of Compressed Sensing

def

N-1
X = Z Ty e_%mn/N, ke Z (integers)
n=0

EEE EEEEE BN EEEl .

» Underestimated equation !
» The dimension of solution space is N-M

» But if x is sparse, under certain conditions the
function has unique solution!
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. What’s Compressed Sensing? f@ HEREREE

Essence :
Sparsity, Coherence — Compressed

Issues:
1. Sensing

EREE | AAESERANREE
2. Recovery.

AR : [ESEHE. BERITHIEE.
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What’s Compressed Sensing?
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» My Understandings of intrinsic nature of Sparsity

Objects or events have information much less than
the representational ability of the coding system,
which give rise to a compressed or sparse
representation over specify basis.
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» 12 balls problem

Question: You are give 12 identical looking balls. One of them is
fake (could be heavier or lighter) than the rest of the 11 (all the
others weight exactly the same). You a provided with a simple
mechanical balance and you are restricted to only 3 uses. Find

the fake ball.

http://freemind.pluskid.org/machine-learning/a-compressed-sense-of-compressive-sensing-ii/
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» 12 balls problem : solution

¢ EEN E EEN § BN § ESN § BN § ESN § ESN § ESS § ESN §F ESN § ESS § BN F B F S O F O Em o f .,

We=(M—m)Wy

| sign(Wz) = sign (M — m)Wy,) = sign(M —m)W, |

e o s e s e s e s e s e s e s e s o s e s e e e s e s e e /

A IHIMER{EL IR _ L8 2RI kS e EZ %5 IHY
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HEREBEEABEINE ( ARERmES—ITRIIER]
ﬁ%&;ﬁ%) , AT LARIBIX NI ERE M H RS BRAY L
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» MRI: Magnetic Resonance Imaging

O = (CT ) SoRFIZREEIR ( MRT)
AR, (NERFRREEINEAEEIZIE
&ix= , MERREHELR/EZH TR
[EHIEE.

O iRk , — M RMAISIREEEREIE
ELEET72EGINER. EXIMERT ,
D KEZNISIEAH A SE—ER
PEBERSXANEX (ElMEEHES
EHEEER ) .

O A TR LIERSEESIRAIRT IR RS ERRE—ER0EE ( EgaRD ) |
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Mathematics of CS
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»Bases & Frames (1. Bases)

A set {¢;}", is called a basis for R™ if the vectors in the set span R" and are
linearly i:ndepe:ndent.2 This implies that each vector in the space has a unique
representation as a linear combination of these basis vectors. Specifically, for any
x € R", there exist (unique) coefficients {¢;}}", such that

n
xr = Z cigbi.
i=1

Note that if we let ® denote the n X n matrix with columns given by ¢; and let

¢ denote the length-n vector with entries ¢;, then we can represent this relation
more compactly as

r = Pec.

An important special case of a basis is an orthonormal basis, defined as a set
of vectors {¢;}I*_, satisfying

1, 72=7;

0, 1+ 7J.

An orthonormal basis has the advantage that the coefficients ¢ can be easily
calculated as

(Pis 05) = {

Ci = (35‘, Qb%)a
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»Bases & Frames (2. Frames)
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»Bases & Frames (2. Frames)

It is often useful to generalize the concept of a basis to allow for sets of possibly

linearly dependent vectors, resulting in what is known as a frame [48,55,65,
163,164, 182]. More formally, a frame is a set of vectors {¢;}" , in R?, d <n
corresponding to a matrix ® € R?**", such that for all vectors x € R?,

Alz]3 < [|972]; < B =3

with 0 < A < B < 0. Note that the condition A > 0 implies that the rows of ®
must be linearly independent. When A is chosen as the largest possible value and
B as the smallest for these inequalities to hold, then we call them the (optimal)
frame bounds. If A and B can be chosen as A = B, then the frame is called
A-tight, and if A = B =1, then ® is a Parseval frame. A frame is called equal-
norm, if there exists some A > 0 such that ||¢;||, = X for all i =1,...,n, and it
is unit-norm if A = 1. Note also that while the concept of a frame is very general
and can be defined in infinite-dimensional spaces, in the case where ® isa d x n
matrix A and B simply correspond to the smallest and largest eigenvalues of

T, respectively.
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» Sparsity and nonlinear approximation
A

SRR | —dF=iE , HARRS

A2 k0B
\j
e
Figure 1.5 Union of subspaces defined .e., the set of all 2-sparse signals in

R3.

Geometry of sparse signals

Sparsity is a highly nonlinear model, since the choice of which dictionary elements
are used can change from signal to signal [77]. This can be seen by observing
that given a pair of k-sparse signals, a linear combination of the two signals will
in general no longer be k sparse, since their supports may not coincide. That is,
for any x,z € ¥;., we do not necessarily have that x + 2 € ¥; (although we do
have that x 4+ z € ¥5;). This is illustrated in Fig. 1.5, which shows ¥, embedded
in R?, i.e., the set of all 2-sparse signals in R?.
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‘Some Basic Concepts f@ HESERSE

» Sparsity and nonlinear approximation

are well approximated by the first few principal components [139]. In fact, we can
quantify the compressibility by calculating the error incurred by approximating
a signal x by some T € Xj:

= mi -7, . 1.2

ok (T)p min |z =z, (1.2)
If x € ¥k, then clearly o (z), = 0 for any p. Moreover, one can easily show that
the thresholding strategy described above (keeping only the k largest coefficients)
results in the optimal approximation as measured by (1.2) for all ¢, norms [77].

Hrehg BESEGTE | y = ABEINES |, XNMESERIRIREE , BAS
AJBRERIESIEBX !
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1, Spark
2, NSP (null space property)
3. RIP (restricted isometry property)

Transform

A4

L(A) : coherence of a matrix A
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»Null space(ZFZ|a]) property and Spark Pata Mining Lab

A natural place to begin is by considering the null space of A, denoted
N(A) ={z: Az = 0}.
If we wish to be able to recover all sparse signals x from the measurements

Az, then it is immediately clear that for any pair of distinct vectors z,z’ € Xy,

we must have Az # Az’, since otherwise it would be impossible to distinguish
x from 2z’ based solely on the measurements y. More formally, by observing
that if Az = Az’ then A(x — 2’) = 0 with x — 2/ € Yo, we see that A uniquely
represents all x € ¥, if and only if N(A) contains no vectors in Xor. While

there are many equivalent ways of characterizing this property, one of the most
common is known as the(spark [86].

! Definition 1.1. The spark of a given matrixz A is the smallest number of columns

I of A that are linearly dependent.
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Important Variables and Guarantees f@ ——

» Spark guarantee

Theorem 1.1 (Corollary 1 of [86]). For any vector y € R™, there exists at most
one signal x € ¥y, such that y = Ax if and only if spark(A) > 2k.

Proof. We first assume that, for any y € R™, there exists at most one signal
x € X such that y = Az. Now suppose for the sake of a contradiction that

4 Spark(A) < 2k. This means that there exists some set of at most 2k columns

that are linearly independent, which in turn implies that there exists an h €
N(A) such that h € Xg,. In this case, since h € Xy, we can write h = z — 2/,
where z, 2" € X. Thus, since h € N (A) we have that A(x — ') = 0 and hence
Am = Az’. But this contradicts our assumption that there exists at most one

’—————————
e ——

" "Now suppose that spark(A) > Qk Assume that for some y there exist x, 2’ €
Yk such that y = Ax = Ax’. We therefore have that A(x — 2') = 0. Letting h =
x —2', we can write this as Ah = 0. Since spark(A) > 2k, all sets of up to 2k
columns of A are linearly independent, and therefore h = 0. This in turn implies

x = 2, proving the theorem. ]

It is easy to see that spark(A) € [2, m + 1]. Therefore, Theorem 1.1 yields the

requirement m > 2k.  EHem/IREERYITEL , BIFIRRAIEK(E
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tors that are sparse. In order to state the formal definition we define the following
notation that will prove to be useful throughout much of this book. Suppose that
A C{1,2,...,n} is a subset of indices and let A° = {1,2,...,n}\A. By xz, we
typically mean the length n vector obtained by setting the entries of x indexed

by A€ to zero. Similarly, by Ay we typically mean the m x n matrix obtained by
setting the columns of A indexed by A€ to zero.®

Definition 1.2. A matriz A satisfies the null space property (NSP) of order k

of there exists a constant C > 0 such that,

1Al

— 1.5
7 (1.5)

holds for all h € N'(A) and for all A such that |A| < k.

1oall; < €




Important Variables and Guarantees f@ ——

Data Mlnlng Lab
» NSP(Null roper rantee @ N\’ ,--——---
NSP(Null space property) guarantee 3
To fully illustrate the implications of the NSP in the context of sparse recovery, : Z:IIE HE :
we now briefly discuss how we will measure the performance of sparse recovery e /

algorithms when dealing with general non-sparse x. Towards this end, let A :
R”™ — R™ represent our specific recovery method. We will focus primarily on
guarantees of the form

(1.6)

Theorem 1.2 (Theorem 3.2 of [57]). Let A: R™ — R™ denote a sensing matrix
and A :R™ — R™ denote an arbitrary recovery algorithm. If the pair (A, A)
satisfies (1.6) then A satisfies the NSP of order 2k.

Proof. Suppose h € N'(A) and let A be the indices corresponding to the 2k largest
entries of h. We next split A into Ay and Ay, where |Ag| = |A1| = k. Set z =
ha, + hae and ' = —hy,, so that h = x — 2’. Since by construction z’ € X, we
can apply (1.6) to obtain 2’ = A(Ax’). Moreover, since h € N'(A), we have

Ah=A(xz—2")=0
so that Az’ = Az. Thus, 2’ = A(Ax). Finally, we have that

Jk(-’ﬂ)l ||hA“ 1
h < ||h Tr— T r — A(Ax <C = V2C ’
[hally < [[2lly = || Iy = [lz — A(Az)]|, < NG ok



[Important Variables and Guarantees (e \‘ ——

» RIP(Restricted isometry property) guarant D,a-tihfi-ninf}j,b
| BT |

Candes and Tao introduced the following isometry condition on matrices A and
established its important role in CS.

Definition 1.3. A matriz A satisfies the restricted isometry property (RIP) of
order k if there ezr:ists a 0 € (0,1) such that

(1 = 0k) llzlly < lAzll; < (1+6k) [|z]l3 ; (1.7)

holds for all x € Ek.

If a matrix A satisfies the RIP of order 2k, then we can interpret (1.7) as
saying that A approximately preserves the distance between any pair of k-sparse

vectors. This will clearly have fundamental implications concerning robustness
to noise. Moreover, the potential applications of such stable embeddings range
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It is important to note that while in our definition of the RIP we assume
bounds that are symmetric about 1, this is merely for notational convenience.
In practice, one could instead consider arbitrary bounds

where 0 < a < 8 < o0. Given any such bounds, one can always scale A so that
it satisfies the symmetric bound about 1 in (1.7). Specifically, multiplying A
by /2/(8 + a) will result in an A that satisfies (1.7) with constant §; = (3 —
a)/(8 + «). While we will not explicitly show this, one can check that all of
the theorems in this chapter based on the assumption that A satisfies the RIP
actually hold as long as there exists some scaling of A that satisfies the RIP.

Thus, since we can always scale A to satisfy (1.7), we lose nothing by restricting
our attention to this simpler bound.
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Candes and Tao introduced the following isometry condition on matrices A and
established its important role in CS.

Definition 1.3. A matriz A satisfies the restricted isometry property (RIP) of
order k if there exists a 0, € (0,1) such that

l(l = 0k) llzlly < lAzll; < (1+6k) [|z]l3 ; (1.7)

holds for all x € ¥,.

If a matrix A satisfies the RIP of order 2k, then we can interpret (1.7) as
saying that A approximately preserves the distance between any pair of k-sparse

vectors. This will clearly have fundamental implications concerning robustness
to noise. Moreover, the potential applications of such stable embeddings range
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Definition 1.4. Let A :R™ — R™ denote a sensing matriz and A : R™ — R™
denote a recovery algorithm. We say that the pair (A, A) is C-stable if for any
x € X and any e € R™ we have that

|
IA (Az +e) —zfly, < Clle]], - ;

\

C-stable 1R 7 fEy=AxHY4g iR ( Willis ) F=ERIE] (185 ) XK
IRESXBVR/AN | ERAEIRI SoEE— 1 EE ! !
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One might respond to this result by arguing that since the upper bound is not
necessary, we can avoid redesigning A simply by rescaling A so that as long as A
satisfies the RIP with dof < 1, the rescaled version awA will satisfy (1.8) for any
constant C. In settings where the size of the noise is independent of our choice
of A, this is a valid point — by scaling A we are essentially adjusting the gain
on the “signal” part of our measurements, and if increasing this gain does not
impact the noise, then we can achieve arbitrarily high signal-to-noise ratios, so
that eventually the noise is negligible compared to the signal.

However, in practice we will typically not be able to rescale A to be arbitrarily
large. Moreover, in many practical settings the noise is not independent of A.

For example, consider the case where the noise vector e represents quantization
noise produced by a finite dynamic range quantizer with B bits. Suppose the
measurements lie in the interval [—T,T], and we have adjusted the quantizer
to capture this range. If we rescale A by «, then the measurements now lie
between [—aT, oT], and we must scale the dynamic range of our quantizer by «.
In this case the resulting quantization error is simply ae, and we have achieved
no reduction in the reconstruction error.
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Theorem 1.4 (Theorem 3.5 of [67]). Let A be an m X n matriz that satisfies
the RIP of order 2k with constant § € (0, %] Then

[ ==
ym > Cklog (%) |

where C = 1/21og(v/24 + 1) =~ 0.28.

EEE EEEEE EE EEEl .

AERIHESHUHILISHARR TR | TEZECHIE.
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Definition 1.5. The coherence of a matriz A, u(A), is the largest absolute inner

product between any two columns a;, aj of A Smmmmee=s /
|’ ......... |Taf; Z)] -,
- mA) = 1<m<ax< T :
oL e llallzllefla )
Lemma 1.4. For any matriz A, \
1
spark(A) > 1+ ——.
(4) pu(A)
Theorem 1.7 (Theorem 12 of [86]). If ﬁEIJ?IJ-(A)
Lol (1 L2 ) 5Spark,
2 w(A) NSP. RIP

then for each measurement vector y € R™ there exists at most one signal x € Xy, Hg*g
such that y = Ax.

Lemma 1.5. If A has unit-norm columns and coherence p = u(A), then A sat-
isfies the RIP of order k with 6 = (k — 1)u for all k < 1/p.
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Given measurements y and the knowledge that our original signal x is sparse :
or compressible, it is natural to attempt to recover x by solving an optimization
problem of the form

| £ =argmin [[z], subjectto ze&B(y), I (1.10)
I z

One avenue for translating this problem into something more tractable is to
replace [|-||, with its convex approximation ||-||;. Specifically, we consider

| 7 =argmin |z|]|; subject to ze B(y). I (1.12)
I

Provided that B(y) is convex, (1.12) is computationally feasible. In fact, when
B(y) ={z: Az = y}, the resulting problem can be posed as a linear program [53].
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min|/z|g, s.t.Az=0D

StEEk < 1/2u. OMP ESANIEET -

130k 2 =0, = A2’ —b=5,5=10

2.Ford =1,...,k
1. % j sargmax |(A;, 1) /|| 453
2.8+ S5U34
3.7° < Proj;. (b) , 25 U = span(4g)
4 10 v = 0 MHBHETR

3. 3KEE Agxg = b 15 = FHAFERSL

@:

ﬂﬁ%ﬁ*hél
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BRIERERERESSE TN J IAESE S | BANE j EZRlIE—S AR S

THNE | BBA residual v F1 A; IATRSEIAT | FIUASHENZ M

ITED § AEHANEERR, B

LIEST b ERZEIBEEE kR EREAEREX bk TR T @ 49 k P9EZ T,

ST ={j:x; # 0}, NEI=EENZE S = T,
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I
I A4 I
B A br-norm EEMTETHEES IR FRSNG, S5 FEE - | ANIERA
\ o o o 4

o1
2*(X) = arg min 5 || 42 — y||* + Alles

XM IBFEFET regularized linear regression ZajR , Eop{ER £1 -norm {EA regularizer £fREF
SRR RN albEEE eI a2, EENF NIRRT LR A(ER Laplace prior B9
MAP Z2&{E1TAr5EIR0 BReREL.

B—NEREEESRE T Compressive Sensing BIS01 R ¢

z’(€) = arg min ||z||; s.t.||Az —y|* <e

T

FE=NEIBBERREF] constraint BHUERIIFE— T | IXEIFR LR LASSO RIFIAAAL -

1
#(t) = arg min || Az —y|* s.t.||e[s <t

T

http://freemind.pluskid.org/machine-learning/a-compressed-sense-of-compressive-sensing-iii/
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» Single-pixel cameras

Low-cost, fast, sensitive

optical detection )>
PD i &
= A/D

Compressed, encoded
image data sent via RF
Image encoded by bDMD il for reconstruction

and random basis < , (
""" T L DSP

http://blog.csdn.net/jbb0523/article/details/41288573
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» Single-pixel cameras

mask M

-
L

Landing tip
gl substrate

http://blog.csdn.net/jbb0523/article/details/41288573
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» Single-pixel cameras

target 11000 measurements 1300 measurements
65536 pixels (16%) (2%)

test image(65536 pixels ) and CS construction using 11000 and 1300 measurements

https://terrytao.wordpress.com/2007/04/13/compressed-sensing-and-single-pixel-cameras,
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»Compressed sensing SCfR_E RIS S5KE
8, FIWR 7 TOZERRSREE ( ﬂ_ﬁh\éﬁ&ﬂgﬁ ) «

> B JEZRIERAA

e Matrix Construction

* Signals Recovery

>Compressed sensing EFES LIFFEE |, HERET
Tk, BTFHITEEX. [BHElIFEELIRE , T35
RZFRFREIVER 55 FBIR.
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A specific linear transformation
T eL(V,W) v, =a,0++a,0,
V1 Uy Un

The matrix of T on the basis V
and W

[ X[0]] " xo1]
X[1] x[1]
X[2] x[2]
X[3)f X[3]

o x[4]
x[5]

x[6]

X7]]
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A specific linear transformation

T eL(V,W) v, =a,0++a,0,
(4] Uy (27
: : W1 aik
The matrix of T on the basis V .
and W :
Wm A,k
Example: T(X,y)=(x+3y,2x+5Yy,7Xx+9y)
g
2 5

T(@,0)=@1,27),T(0,1)=(3,5,9)



